
Bridge Motion to Collision Alarming  

Using Driving Video  

Mehmet Kilicarslan and Jiang Yu Zheng 

Dept. of Computer Science 

Indiana University Purdue University Indianapolis 

Indianapolis, USA 

mkilicar@iupuis.edu, jzheng@iupui.edu 

 
Abstract— the objective of this work is to compute the Time-

to-Collision (TTC) of surrounding vehicles of a vehicle using 

motion information in driving video. The key advantage in this 

work is the extraction of potential danger without vehicle 

detection and recognition in prior, but directly from the motion 

divergence in the video. We analyze the trace expansion both 

horizontally and vertically condensed in the collision sensitive 

zones in the driving video. Long term motion is stably obtained 

through filtering in the spatial-temporal video profiles at collision 

sensitive parts in the video. This overcomes the accuracy problem 

in object recognition and saved the computation cost 

tremendously in the real time sensing. The fine velocity 

computation yields reasonable TTC accuracy so that the video 

camera can achieve collision avoidance alone from size changes 

of visual patterns. 

Keywords—image motion; spatio-temporal image; collision 

alarming; motion profile; time-to-collision 

I. INTRODUCTION 

A lot of sensors such as LiDAR and Radar have been used 
for depth acquisition to avoid collision, and have achieved 
great success in autonomous driving and safety improvement 
of vehicles. On the other hand, inexpensive cameras have been 
widely used on vehicles as well. Vehicle recognition and 
tracking in video have been intensively studied for collision 
avoidance. However, vision approaches may still have errors in 
understanding complex road scenes with rapidly changing 
background [9], even if it has a wider angle for identifying 
obstacles and road than LiDAR and radar signals.  

In various works of potential collision detection, a target 
vehicle has to be identified first with Haar-type operators via 
training [1, 2] and a bounding box is fitted onto it for tracking 
[3]. Through tracking consecutive frames, the size and position 
of box are updated for understanding vehicle depth [4]. There 
are still errors in vehicle detection and disturbances in tracking 
scenes rapidly changing due to the vehicle shaking, scene 
occlusion, and shape deformation. 

This work, however, uses the motion information in a 
vehicle borne video [5] to find potential Time-to-Collision with 
the minimum requirement of object recognition. This avoids 
overwhelmed object search in the field of view with 
classification windows of different scales, and saves the cost in 
the real time processing. Our approach is as follow. The 
dangerous collision from mid-range happens when an object 
approaches to the camera/vehicle. This approaching generates a 
zero-flow (optical flow close to zero) on the target [5, 11]. The 

time-to-collision of a target thus can be obtained instantly from 
the object size divided by its size change according to the well-
known rule [6]. Around the zero-flow spots, we monitor the 
scene divergence horizontally and vertically in crossing zones 
in the video frame to avoid the tracking of bounding box. We 
focused on longer term flow continuously than traditional 
between-frame optical flow for obtaining stable motion 
information.  

We focus on special image areas in the field of view that a 
target vehicle cannot be missed [7]. Instead of computing 
general optical flow on feature points [11], we compute fine 
horizontal motion flow condensed vertically in the area. This 
condensing provides more reliable motion evidences from 
larger and linear features than points. The potential collision 
vehicles with zero or small flow are extracted in order to ignore 
most background and non-danger vehicles [8]. At the same 
time, the horizontal orientation is divided to many zones with 
varied widths according to the attention angles. In the zones 
detected with zero-flow, the color is further condensed 
horizontally for the vertical motion. Moreover, convergence/ 
divergence factor is computed from the clusters of trajectories 
to confirm approaching vehicles, exclude leaving vehicles, and 
follow vehicles moving in parallel. Time-to-collision (TTC) 
can then obtained for collision alarming. 

In the following sections, we describe our motion data 
collection in Section 2 for zero-flow with possible danger. 
Section 3 is to confirm flow divergence for alarming. Section 4 
compute the Time-to-collision, supported by Experiment in 
Section 5. 

II.  MOTION PROFILING AND UNDERSTANDING 

There are full of lines visible in the driving video. They 
include vertical lines on vehicles, poles, and side objects, as 
well as horizontal lines on vehicles such as bumper, window, 
roof, shadow, and on the ground such as road edges and 
surface marks. They are more robustly distinguishable than 

   
Fig. 1.  Profiling motion in a belt around horizon by condensing color 
vertically to form an array, and then accumulated to the profile P(x,t) in 

right image. 

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4847-2/16/$31.00 ©2016 IEEE 1870



points in the scenes. To focus on a potential collision, a motion 
profile P(x,t) is obtained from a horizontal belt at the height of 
projected horizon, y0, in video frame I(x,y,t) as shown in Figs. 1 
and 2. We continuously project color vertically in the belt to 
obtain an array in each frame t, and connect temporal arrays to 
a spatial-temporal image P(x,t) called motion profile [7]. The 
motion of vertical features appears as trajectories in it. 

The motion profile has the advantages to avoid irrelevant 
background without target vehicles. Because the camera is set 
at a height lower than the roof of most vehicles, the vehicles on 
road are guaranteed to be covered by the sampling belt. The 
belt height also tolerant vehicle pitch changes to some extent in 
obtaining a smooth motion profile when a vehicle moves on an 
uneven or waved road. The depth changes of a front vehicle 
may smoothly change the color of its trajectory in the motion 
profile. This will not affect the trajectories of vertical features 
on the vehicle. Because of the vertical color condensing in the 
belt, the profile collects more vertical features even if they are 
small, which results in dense motion traces. 

To obtain the target motion across multiple frames, we 
compute the direction of motion trajectories from its gradient 
orientation in the motion profile. This filtering is more stable 
than optical flow only from two consecutive frames. Also, the 
optical flow condition of consistent lighting and motion 
smoothness are frequently violated in driving video due to 
shadow and occlusion. Even if the trace color changes 
smoothly in the profile due to various reasons, the trace 
direction will not change significantly. We compute the trace 
orientation based on first derivative in the motion profile. To 
avoid the noise from digital sampling of motion profile, we use 
large horizontal and vertical filters (9×9 pixels) Gx and Gt for 
gradient. This will fill the velocity direction of traces almost 

everywhere in the motion profile.  
To obtain flow as dense as possible for the motion at all 

orientation as shown in Fig. 3, we lower down a threshold for 
picking meaningful vertical gradient values as  

   G(x,t)   |Gx|> δ1           (1) 

to compute horizontal image velocity u from 

              u(x,t) = - (Gx/Gt)                            (2) 

For those locations x with G(x,t)<δ1, u is not reliable as noise. 
A temporal illumination change when a vehicle goes under 

a shadow area. A vehicle pitch may also post abrupt color 
changes in the motion profile. These cause contrast (edges) 
orthogonal the time axis. Such an edge is not on real feature 
traces and are removed according to their close to horizontal 
orientation (u close to infinite) in the motion profile. Among 
traces, a flow expansion along time means the enlargement of 
object due to decreasing depth Z (target is approaching). 

III. POTENTIAL COLLISION AT ZERO FLOW POSITION 

A collision of target toward the camera has a relative 
velocity towards the camera as shown in Fig. 4. The zero-flow 

x (a) x (b) 

Fig. 2.  Stable flow computation from long term traces. (a) Motion profile. 

(b) Detected motion in color. Red indicates zero flow in continuous P(x,t). 

Blue and green shows velocities in two different directions. 

   

Fig. 3.  Profiles containing motion of surrounding vehicles and background. 

The horizontal axis is image x and vertical axis upward is time t. Background 
scenes have divergent flow traces to two sides. Blue car trace is visible in left 

profile. Stopping period yields vertical traces in parallel. Breaking light on of 

a front car yields red diverged traces  

 

 
Figure 4. The collision of two vehicles observed by the camera on one 
vehicle (v0). Left: absolute speeds of two vehicles. Right: relative speed of 
the collided vehicle v1- v0 towards the camera, which appear as zero flow of 
vertical features. Even if the two vehicles are moving on curved paths, the 
same mechanism applies. Top: vehicles move along straight paths. Bottom: 
vehicles turn on curved paths. 
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means a motion along the line of sight of the camera, which 
can be (1) approaching to, (2) leaving, and (3) keeping same 
distance from the camera. Other flow directions mean scenes 
passing by. Extracting zero flow can ignore background region 
to process further. To identify the zero-flow in the profile, the 
image velocity satisfies 

   |u(x,t)|< δ2                                   (3) 

which removes safe passing objects, vehicles, and instant 
changes of profile colors due to vehicle pitch/shaking and 
illumination changes. Figure 5c is an example of such result. 
This operation may still contain digital error and instant 
illumination changes. We thus apply median filter to u(x,t) to 
obtain reliable clusters of zero-flow in the motion profile. At 
the area with homogeneous color, i.e., G=0, the random noise 
of u generates small dots after applying (3). After median filter, 
the noise points are removed as shown in Fig. 5d. 

There are three cases of horizontal zero-flow as mentioned 
above in (1)-(3). Only approaching case will cause collision if 
no avoidance is taken. This can be confirmed from the flow 
divergence around the zero-flow spot, where an object is 
enlarged due to depth reducing. However, it is not reliable to 
segment the horizontal flow u(x,t) to individual objects from 
the motion differences, because (a) multiple vehicles may have 
the same flow; (b) Complex occlusion between vehicles and 
background may not reveal entire objects. Flow at occluding 

point does not reflect true motion. (c) Between-vehicle space 
may expend or shrink in video. The flow divergence or 
convergence there does not imply a depth change of space. (d) 
Empty background has less feature. Overall, there is no 
guarantee to find an object robustly from color, parallel or 
coherent traces, etc. Therefore, we will not segment an object 
for its size, rather we examine the size change vertically to 
identify approaching object. 

The horizontal orientation of the view is divided to 
different vertical zones as Z0, Z1, Z2, …, Zn depicted in Fig. 6, 
with Z0 at center, odd number zones on left and even number 
zones on right respectively. The scene convergence/divergence 
is determined in each zone with zero-flow including zone 
without vertical features (no traces in P). In such vertical 
zones, horizontal color condensing is carried out to produce a 
series of vertical motion profiles, P0, P1, P2, …, Pn. We find the 
distinct flow in each zone where zero-flow has been detected 
and figure out the enlargement of objects in both horizontal and 
vertical profiles as in Fig. 7 for alarming approaching vehicles. 

The width of Z0 is set such that a front car 20m ahead can 
still have a distinct output in the profile P0, i.e., the width of Z0 
is about the width of front car at 20m away. Beyond 20m, a car 
may not be large enough to appear as trace in the vertical 
profile. Zone Z0 certainly is filled up by a car closer than 20m. 

For each zone, color pixels are horizontally averaged for a 
vertical motion in Pi(y,t). Because of the scanning effect of side 
zones with respect to the side scenes of the road [13], the 
profiles may contain shapes of scenes rather than motion traces 
repeated by the same objects, if the zone does not have a zero-
flow in the horizontal motion profile. These scanned scenes 
provide no information on the object speed. We thus only 
compute the vertical image velocity in the zones where the 
horizontal zero-flow points are the majority. Figure 7 shows 
the pairs of horizontal and vertical profiles simultaneously 
obtained from video. Zero-flow regions are marked in 
horizontal profile P(x,t) and the vertical flow v is marked in the 
corresponding vertical profiles. The identified traces in the 
vertical profiles are mainly from horizontal features such as 
vehicle bumper, shadow, window, top, etc. Finding the traces 
in a vertical profile can provide the speed information of target 
relative to the camera in that direction. The total cost to obtain 
vertical profiles is equivalent to averaging the entire image 
frame once. This is much smaller than the vehicle detection 
with a scalable window shifted in the view. 

IV. TIME-TO-COLLISION COMPUTATION 

If the vehicle/camera is moving along a straight path, the 
points on static background and on the vehicles moving along 
the same direction (on parallel lanes) pass Z=0 in the camera 

(a) (b) 

(c) (d) 

Fig. 5.  Computing zero-flow in horizontal profile. (a) Original motion 

profile (b) Horizontal image velocity (c) Zero flow time in green, (d) Zero 

flow regions after median filtering. 

 
Fig. 6.  Defining vertical zones in the video frame for vertical profiles. Red 

arc is the ultimate distance to sense vehicles. 
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coordinate system in the Time-to-Pass (TTP, many works call 
it Time-to-collision traditionally). It can be computed as 
TTP=x/u, where x is the image coordinate of the point and u is 
its derivative, i.e., horizontal image velocity. The relative 
motion of these points is parallel to the Z direction. For the 
points not moving along the Z axis, e.g., a vehicle moving in its 
own direction, above formula does not apply. In such a 
situation, if the road is highly flat so that the surrounding 
vehicles are on the same plane, the TTP of points on such 
vehicles or even on background can be calculated from their y 
coordinates divided by the vertical image velocity v, i.e., 
TTP=y/v. However, a road may be rolling and a camera/vehicle 
has shaking in pitch all the time. 

We therefore use LINE segments to compute TTC because 
they are more reliable in tracking as compared to points. It is 
not difficult to prove that TTP for an object with two identified 
vertical lines can be computed from TTP=D/D’ in general for 
all target moving directions, where D is the object size and D’ 
is the size change in the video. This means at least two lines are 
necessary to be marked on the same object in order to measure 
size D=x2-x1, and scale change D’=u2-u1 on two vertical lines, 
which equals the size divided by size changes. However, it is 
not easy to couple two vertical lines on the same object without 
vehicle recognition, i.e., to mark two trajectories on the same 
object in the horizontal motion profile. We thus switch to the 
VERTICAL motion profiles at each orientation to observe the 
motion of horizontal lines for the TTP to those lines.  

Two types of outcomes are obtained from our vertical zones 
in the obtained motion profiles. When an object stays at an 
orientation that causes zero-flow horizontally, its vertical 
motion is captured repeatedly in the corresponding vertical 
profile. On the other hand, if a scene passes that orientation, the 
zone is scanning different scene. Generally, such transition of 
different scenes does not provide motion information. 
Nevertheless, if we use horizontal line segments condensed in 
the vertical motion profile, we still can obtain the motion 

orthogonal to the lines according to the aperture problem. In 
the following, we prove that the trajectory of a line in a motion 
profile provides its Time-to-Collision (TTC) to the camera. 

Assume a 3D line LE is horizontal in the 3D space as in Fig. 
8. It can be a surface line or road edge. The vehicle moves 
straight in forward direction at speed V0, while a vertical profile 
samples LE at a fixed orientation Zi (OB). The TTC to LE at A 
is the OA/V0, where OA is the distance to collision. In the 
direction Zi, the observed point B is shifting to B’, B’’…, A on 
LE and TTC is equal to OB/Vl, where V1 is the approaching 
speed of line in that orientation. Therefore, 

In video frame, the depth of a point is projected to the camera 
at coordinate y as 

 
where Y is fixed for horizontal line in the 3D space, and Z is the 
depth of point B when the line is approaching. Taking the 
derivative of (5) with respect to time t, we have 

where Vz=dZ/dt and Vy=0 due to fixed Y. The TTC thus can be 
computed from (4) according to (6), which results the same 
TTC as for points. 

This allows us to use the vertical profile in the collision 
estimation of road edges, vehicle bumpers, and a stopped lines 
regardless if the point viewed by the sampling zone is at the 
same position or shifted on line. Figure 9 gives an example of 
viewing horizontal road edge in a vertical profile. 

Similarly as in the horizontal motion profile P(x,t), the 
vertical motion velocity v at the traces with strong contrast is 
computed from the gradient orientation as shown in Fig. 8. By 
examining vertical profile Pi(y,t), we found phenomena as:  

• Feature traces on a vehicle such as bumper, window, and 
roof lines scale up and down coherently during depth changes, 
which means that they have the same TTC. 

• Road surface has ground features such as white surface 
marks, shadows, and their motion is fast approaching in 
hyperbolic function of vehicle speed. Vision is incapable of 
sensing feature heights above the ground as radar and LiDAR. 
However, we can compute the TTC to that surface line using 
(7). For curved surface mark, we still can estimate collision 

 
Fig. 7.  Compute vertical velocity in a vertical motion profile according to 
the zero-flow in the horizontal profile. (Top) Vertical profile and computed 

image velocity in color, (bottom) horizontal profile and dense image 

velocity. 

 
Figure 8. The approaching of vehicle toward a line in a certain angle. The line 
is viewed by a vertical sampling zone as a trajectory in the corresponding 
motion profile. 
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based on piecewise line segments approximating the curve.  
• The trace expansion on a vehicle is mainly observable 

below the horizon in the frames. However, due to road 
unevenness and vehicle shaking, the y coordinates of horizontal 
features are simultaneously waved from time to time (Fig. 7).  

We classify the ground surface marks in white color and 
exclude them in the alarming decision. Single narrow trace of 
horizontal mark at the lowest position of video frame is ignored 
and so as in the vertical profile. If multiple bright lines are 
crowed in front of the vehicle, we take them as an area to pay 
attention and remind driver to slow down. 

For each time instance t in the zero-flow profile as shown 
in Fig. 9, TTC is computed from multiple traces at their peaks 
of gradient starting from the horizon, after ignoring the surface 
marks as the outlier. Selecting the closest trace to the horizon at 
a position y0 and with velocity v0 computed from trace, the 
velocity v of a trace at y position is obtained in the vertical 
profile through filtering. For all the traces in the profile, their 
sizes are D=yi - y0 and the size changes are D’=vi–v0. The TTC 
of an object is obtained according to (7) as 

 
where coefficients αi is related to |yi| and has ∑αi = 1. More 
weights are put on lower features away from the horizon, 
because a large yi has large an expansion rate. If TTC is a 
negative value, the traces are converging and the target vehicle 
is leaving away from the camera, which has no danger of 
collision. The common expansion rate of the traces from car 
shadow, bumper, window, and roof of vehicles is then obtained 
for alarming collision.  

V. EXPERIMENTS 

The experiments are carried out using a large driving video 
database [9] and [10] taken by video cameras facing forward 
under different weathers and illumination conditions. The 
horizon is provided in a motion-blurred image by condensing 
the entire video clip temporally. No other camera calibration is 
necessary and the horizon is only a rough estimation of the 
location for pixel condensing to the motion profile. The belt is 
to cover a vehicle 20m ahead, and it certainly covers a closer 
vehicle in obtaining distinct motion. The video has the 

resolution of 1280×720 and 640×480 pixels in [9] and [10], 
respectively, and are sampled 30 frames per second.  

Before we condense the color for profiles, we have also 

tried traditional optical flow computation in our experiments. 

The optical flow is unable to generate reasonably accurate 

velocity values for TTC computation; the flow between 

consecutive frames is noisy. The separated frames also contain 

large error because of heavy occlusion and fast scene changes 

in driving video. We thus employ the color condensing method 

for obtaining motion traces from video. The window height and 

width are set differently for two data sets. The vertical zones 

are condensed in parallel with the horizontal profile 

condensing, although only the vertical profiles with zero-flow 

in the horizontal profile are used for alarming approaching 

depth. The condensing of selected belt and zones for profiles 

cost a fixed amount of time in averaging pixels. The delay of 

the process in alarming is about 4 frames (<0.2 second) caused 

from the filtering with 9-pixel window. This delay is still 

tolerable in real time collision prediction. The main 

computation is the averaging, filtering, and parameter 

P, P5 

P, P3 

P, P1 

P, P0 

P, P2 

P, P4 

P, P6 
Fig. 10.  Horizontal profile displayed vertical profiles (P, Pi). Vertical profiles 

P0~P6 are generated from the red zones in the horizontal profile P stacked at 

top. Non-zero-flow are shaded and ignored. Only zero-flow zones marked in 
red in certain periods in P are examined in Green regions of vertical profiles. 

The horizontal axes are time, and vertical axes are x and y respectively. 

 
Figure 9 Example of scanning effect of lane change event in highway. Top 
images are first and last frames. Divergence of parallel lines to the heading 
direction is visible in the y profile in the bottom image. One curb line is 
highlighted in yellow both in frames and motion profile. 
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calculation with fixed size windows, which greatly reduce the 

complexity of system and can be reduced further to satisfy the 

real time video processing requirement during vehicle driving. 
Figure 7 shows one example where zero-flow is detected in 

the horizontal profile, and corresponding vertical profiles are 
triggered for processing in the zero-flow periods. More 
examples can be found in supplemental video. Because we 
have displayed the major features of a vehicle in trajectories, 
their positions and velocity changes are more visible and 
countable than verifying a bounding box in tracked video.  

According to (7), the accuracy of TTC is mainly related to 
the image position of trace and the image velocity estimation. 
The position can be located at the trace peak with an accuracy 
of 1~2 pixels in the profile. The errors in the velocity is yielded 
from the digital error of 9×9pixel filters. It can be easily 
derived that the TTC error is inversely proportional to (Δv)2, 
i.e., the divergence rate of object traces. This rate is more 
obvious for close targets than distant ones according to the 
perspective projection of video. From (7), we have 

 

where |dy| is the edge location error in 2 pixels. However, dv is 
not fixed. To simulate the error rate of velocity detection, we 
skew an edge in the spatial domain to simulate traces in various 
directions in 9×9pixel window. Filtered results of image 
velocity are compared with the true velocity in Fig. 11. The 
error is distributed in the scope of large angles correspond to 
high image velocity. The overall accuracy is also estimated by 
using Eq. 7, and the distribution is shown in Fig. 12. 

Figure 13 shows the estimated TTC in second from the 
image position and image velocity in the motion profile. The 
image size is 720 pixels with the center shifted to the horizon 
position in the image. Red color is short TTC in danger and 
blue is safe status. We can pre-compute a lookup table and 
directly obtain the TTC in real time estimation. 

Using neither the real distance to the targets nor the vehicle 
speed itself, we have to obtain image velocity precisely to 
facilitate the TTC computation. Besides real TTC values, we 
display four levels of collision status in video. Safe orientations 
are not colored. Pay-attention areas close to zero-flow at the 
horizontal are painted in yellow. The approaching objects are 
marked as orange and then dangerous red. We have applied our 
algorithm onto the naturalistic videos without accidents, and 
the output shows the sensitivity of algorithm. 

VI. CONCLUSION 

Our method purely uses motion from a cluster of linear 

feature to compute TTC, which is in principle applicable to all 
background and avoids complicated vehicle searching and 
recognition in the video. Selective regions for spatial-temporal 
profiling of motion achieved the alarming of dangerous 
collision as well as improved computational efficiency for real 
time processing. The method is an original work using motion 
only and the test has been carried out on various videos and 
vehicle objects. The avoidance of vehicle recognition makes 
the method irrelevant to target vehicle shape and types. 
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Figure 11. Error rate of computed 
velocity and actual velocity. The unit is 
pixel. 

 

 
Figure 12. Time-to-collision error in seconds. Red 
regions are high errors and more uncertainty while 
blue regions are robust. 

 

 
Fig. 13 TTC in seconds. Vertical axis is y position centered 
at horizon, and horizontal axis is the image velocity in pixels. 
Red is collision regions and blue is safe regions of TTC. 
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