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M. Kilicarslan and J.Y. Zheng, Senior Member, IEEE

Abstract— This work models various dangerous situations
that may happen to a driving vehicle on road in probability,
and determines how such events are mapped to the visual field
of the camera. Depending on the motion flows detected in the
camera, our algorithm will identify the potential dangers and
compute the time to collision for alarming. The identification
of dangerous events is based on the location-specific motion
information modeled in the likelihood probability distributions.
The originality of the proposed approach is at the location
dependent motion modeling using the knowledge of road
environment. This will link the detected motion to the potential
danger directly for accident avoidance. The mechanism from
visual motion to the dangerous events omits the complex shape
recognition so that the system can response without delay.

I. INTRODUCTION

An in-car camera has a wider angle of view as com-
pared to radar [1] and laser range finder and is good at
grasping various happening on the road. There have been
many works on tracking vehicles and pedestrians with a
vehicle borne camera during the vehicle driving for the
purpose of safety. However, most of them are based on
the shape recognition [2,3,4,5,6,7,9]. Complicated algorithms
are applied to video frames to identify vehicles based on
their shape, color and intensity distribution learned through
off-line learning. Although such efforts normally have a
certain success rate in complex urban environments, they
and have not been used for the fast response to the vehicle
collision situations. On the other hand, the motion based
approach has added information to the shape recognition
with the dynamic objection localization. According to the
vehicle motion model and extracted image motion properties
such as positions and velocities of features, the background
and moving vehicles can be classified under normal driving
conditions [10]. More importantly, the allocated motions of
targets in the field of view help the vehicle following and
accident preparations.

Along the line to focus on the motion information [10],
we investigate more complicated situations on the road than
just separating background scenes and foreground moving
vehicles. In this work, we model major potential dangers
visible by a facing forward camera on the road when the
vehicle is moving. These dangers are caused by other vehi-
cles approaching to the observing vehicle in normal driving
scenarios. Then, we map the dangerous situations in terms
of location and speed of vehicles to the video space in terms
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of images position and velocity. Using the image velocity
detected in the video, we can identify the types of dangerous
events using Bayesian framework and Decision Tree, and
estimate the time to collision for early preparation. Our goal
is to assist driver to realize the potential dangers at each
moment with the in-car video information.

The contribution of this paper is the probability modeling
of dangerous events in the video space that allows a fast
classification for alarming. In the following, we will start
from the motion analysis for the vehicle collision in Sec. II.
Then we will describe the potential dangers of collision on
the road with the probability in Sec. III. Section IV is devoted
to the mapping of probability distribution to the video space.
Section V addresses the future work of Bayesian decision
and Decision Tree algorithm to alert the potential dangers.

II. COLLISION EVENTS AND IMAGE PROJECTION

Assuming a vehicle mounted with a video camera is mov-
ing on a road with a known speed. Surrounding vehicles may
collide into it from various direction if their relative motions
are towards the observing vehicle as illustrated in Fig. 1.
The video camera facing forward can pick up several events.
We omit the collision detection from rear and rear-side
during a lane change of the observing vehicle because such
situations require more cameras facing back. The camera
takes video input at the frame rate of 30fr/sec. The significant
feature points from corners due to the color discontinuity and
intensity peaks due to tail lights are extracted in the images
and tracked in real time during the vehicle movement [10].
These points may occur as surface mark on the back or side
of the surrounding vehicles or environment so that they can
be followed stably.
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Fig. 1. Collision Directions

Denote the vehicle/camera coordinate systems by O —
XYZ, X is the horizontal distance of an object point from
the camera axis, Y is facing down, and Z is the depth of a
point from the camera. The camera is set in a typical way in
the vehicle in the forward directions. Assume that x(¢) and
y(t) are image positions and u(¢) and v(¢) are the horizontal
and the vertical image velocity components, respectively. The
image mapping from a feature point P(X,Y,Z) in the 3D



space in front of the observing car to the camera frame is

_X@) Y
Z(t) "’ Z(1)

x(t) y(t) ey
where f is the camera focal length.

The relative velocity of a scene point P(X,Y,Z) can be
calculated from the relative translation (7i(1),T(z),T:(t))
with respect to the camera, and rotation (Ry(t),Ry(t),R;(t))
of the camera. On a flat road situations we can assume
R.(t) =0 and R.(¢). Also, we can assume V, () =0 since
there is no velocity change in Y direction. The relative speed
of the scene point P to the camera is,

(Va(2), V3 (1), V(1))
(T(2), Ty(1), T:(2)) + (X, Y, Z) X (R (1), Ry (1), R: (1))
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The image velocity (u,v) can be computed as in [10] as

ST —x(0T:(0) T(0)

Z(1) -

u(r) 770

v(t) = 3)
with T,(t) =0, Rc(t) =0, Ry(t) =0 and R.(r) = 0. Mildly
curved road is omitted here but can be considered as in [10]
by adding a common flow component to the above equations.
Vehicle turning at a road crossing will not be modeled in this
paper, since it could be a more complex scenario that needs to
be examined in a different way. Thus, we can consider that, at
a short time duration, the vehicles are performing translation
only in various directions. Therefore, the image properties
such as vanishing point can be employed in describing the
Time-to-collision (TOC).

Considering the width of the observing vehicle and a
target vehicle as shown in Fig. 2(a), the relative moving
direction of the target vehicle outside the arrows will not
cause a collision. Otherwise, the target vehicle approaches
to the camera in any angle o within the gray region will
yield a potential collision. From the camera point of view,
the collision direction is equivalently indicated within the
yellow region in Fig. 2(b), considering a secure width of the
observing vehicle added to the width of the target vehicle.
A linear motion in o direction with respect to the camera
will have a vanishing point or focus of expansion (FOE) in
the image frame for the feature points on the target vehicle.
The yellow range in Fig. 2(b) is thus mapped onto the image
frame as a scope also indicated in yellow as shown in Fig.2(c)
on the projected horizon.

Let us denote this span of the dangerous moving direction
as [x7,x,] wider than the target vehicle in the image at time
fo. At time ¢#;, the image velocities (u,v) of points on the
target vehicle form a vanishing point (xo,yo) under the linear
motion during [fo,#{]. The vanishing point should be on the
projection of horizon if the road is horizontal, i.e.,yg = 0.
If xo € [x;,x,], there will have a potential collision because
the relative motion vector falls into the collision direction.
Otherwise, two cars will not collide.

In a relative speed T, distance Z takes the Toc to be
reduced to zero. It is not difficult to derive from the compu-
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tation of image velocity that

where (xo,yo) is the vanishing point in the image plane.

Although the vanishing point can be computed from the
intersection of motion vectors (u,v) of many points and
the projection of horizon (y =0) in the image frame, the
accuracy is not guaranteed if the error in (u,v) is taken
into account. More importantly, the width of the vehicle is
unknown. The recognition of the vehicle occupied area in
the video is another ongoing research task and has not been
used in real time video at a high successful rate. Therefore,
a more reliable system should be developed for early alarm
of collision based on probability.
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Fig. 2. The principle to compute Time to Collision

III. MODEL POTENTIAL COLLISIONS ON ROAD IN
PROBABILITY

Because a car visible at distance can rarely causes a
collision to the observing vehicle even with its maximum
speed, we model potential collisions by focusing on events
on adjacent lanes in a relatively close range. As the observing
car is moving on the road, we identify six scenarios briefly
that may cause potential collision if both cars continue their
motion. These situations, as shown in Figure 3, are denoted
by events E={V;,V,,C,,C,S,,S;} as follows.

Vy : The relative distance of a front car is reduced due
to its slowing down, stopping, or a speed up of
the the observing car.

V, : A vehicle approaches from the opposite lane with a
fast speed.
C, : A vehicle approaches to the driving lane from right

without slowing down or stop. This appears at a
road crossing or a possible merge of vehicles into
the same lane with the observing vehicle.



C; : A vehicle approaches the driving lane from a left
crossing road with the possibility of merging into
the same lane of the observing

vehicle.

S, : A vehicle moving in the same direction on the
right lane cuts in.

S; 1 A vehicle moving in the same direction on the

left lane cuts in.

For each of them, we can define the vehicle location
in a normal distribution. Also, the vehicle speed is in
another normal distribution. Among the speed distribution,
only partial probability for the target car approaching the
camera may cause danger. For example, the front vehicle
in the same direction has a relative speed distributed in
normal distribution. Only a negative value that narrows
down the relative distance between two cars may cause the
danger of collision. Outside these ranges, the vehicles are
not considered to be danger because of a far distance or a
motion leaving the camera. Besides the position and speed
of the target vehicles, the size of vehicle and the road width
are also briefly set in terms of probability.

In the camera field of view, there may also have back-
ground such as road, buildings, parked vehicles, trees, poles,
etc. on road sides. We assume that the driver of the observing
vehicle will not bump into roadside objects to cause self-
accident, then we can treat the background as static scenes.

Fig. 3. Possible collisions from different directions with various relative
speeds. The collision from rear and side rear happens when the observing
vehicle is performing lane change or slowing down. They are not visible by
the video camera facing forward. The blue ellipses show the target vehicle
position distributions and dotted ellipses indicate their relative speeds that
may cause danger.

Assume the vehicle position (X,Z) follows a 2D normal
distribution. The relative speeds (7, ;) in X and Z directions
also follow normal distributions. The height of a vehicle can
be set in a probability as p(Y) ~ (Y +3)/(Y +4), where
Y € [-3m, 1m], with the camera at the height of Im from
the ground. In general, the features are more extractable at
the bottom part close to road (bumper, shadow, window,
etc.) than at high positions (only from large trucks) for
all types of vehicles. Because the vehicle location, height,
and speed are independent, for each dangerous event D €
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{vavovcraclasrasl}s
p(D) = p((X,Z) e D)p(Y)p((T:, T;) € D) 5)

As the special setting of those potential dangers of collision,
the detailed data for the normal distributions are as in TABLE
L.

Sec. Ox | Ux | Oz | Uz | Orx | U1, | Or; | Hr,
Vi 0 6 20 | 20 0 5 0 10
v, 20 10 | 10 | 60 -5 10 -15 5
C, -20 10 | 10 | 60 5 10 -15 5
@] -5 5 20 | 60 0 5 -30 15
Sy 30 10 | 10 | 10 | -10 5 5 5
S -30 10 | 10 | 10 10 5 5 5
Background 0 6 - - - - -15 5
TABLE 1

VARIABLES OF 3D NORMAL DISTRIBUTIONS FOR THE POSITIONS AND
VELOCITIES OF VEHICLES(UNIT METER AND METER/SECOND).

The parameters of the normal distributions are selected
according to the real environment of roads. We have selected
the sufficiently large standard deviations to cover wide ranges
of possible cases if no specific data are available. The
potential dangerous scopes are not set extremely far to avoid
false-alarming and are not set at a too close range because
of insufficient time to response to such accidents.

IV. MAPPING DANGEROUS EVENTS INTO VISUAL FIELD

In real-time vehicle detection, not all the parameters in
(X,Y,Z,T,,T,) are extractable from the target vehicle. What
we can obtain are only the image properties of the objects of
interest. We therefore need a probability model to describe
the image properties such as its position (x,y) and velocity
(u,v) on the target. It is clear from Egs. 1, 3, 4 that u is
determined from X, Z, Ty, T, and v is determined from Y, Z, T,
respectively. Using positions and velocities in the 3D space,
we can now map both background and vehicle probabilities
into the camera space (x,y,u,v) in terms of probability
p(x,y,u,v). Further, we will examine the probability distri-
butions in their subspaces (x,u#) and (y, v) separately, because
a four dimensional space is not easy to classify in real time
collision computation.

A. Background Probability Maps

On a flat road, background is spread on both sides of
the road. Assuming the vehicle speed, V, is known from
the vehicle encoder or GPS, for the background, its V, =0
and V, = —V with respect to the camera, and its X is thus
fixed. The horizontal component of the image velocity in
Eq.3 becomes

XV Vx(r)
72 fX

In general, if p,(x) is the PDF of a random variable ¥,
and B is a monotonic function of Y, then the PDF of 3 can
be calculated as

pp(B) = py (7' (B))]

u(t) for V>0

(6)

' (B) = px(f ' (B)
B L

I

(7



according to [9]. Now, the image motion behavior for a back-
ground point can be computed by the likelihood p(x,u|B).
We use Bayes theorem in order to map the background B to
the image since there is no one-to-one mapping from X,Z,V
to x,v. The likelihood of background is as follows,

p(x,u|B) = p(x,u|(X,Z) € B)

—/p p(x,ulX)dX
X

(®)

Bayesian

Z(x,u)|X)p(V(x,u)|X)dX Z,V independent

va

|x) v ="221x)ax  Egs.1,7

X
X
In order to separate background into two parts, right and

left side, we define the 3D background distribution p(X) as

follows.
X2

p(X) = (1—¢ 302 /(14 X)) ©)

with the homogenous distribution in Z direction. Figure 4
shows background PDFs for different relative speed values.

In addition to the background scenes on road sides, we
further identify the road area. Road has its own position and
velocity informations that help us to model PDFs in terms of
p(x,u) and p(y,v). For road surface, T, = —V and T, = 0. In
addition to these, X follows a normal distribution centered
at 0, and Y is exactly at 1m according to the fixed height
of the camera on the observing vehicle, i.e., p(Y) =1 and

p(Y # 1) =0. With the values set in Table I, the road surfaces
is mapped into the video space as
X xV
—px=22 y="2 1
plr) = ple="2u="2) (10)
X uX f X
=p(Z="—-V=—> Eq.7, Z=1
p( X xz ) q./, x
uX
= /p(X)p(Z _ X V= —2f|X)dX Bayesian
X X
b's
X uXf
= [pe0pz="2p0pv =L x)ax
b'¢
Z,V independent
X
= /p(X)p(V = g|X) dX Invariant in Z
X
X

Y 14
p(y,v)=ply= f7 V= yZ) (1D)
Y Y
= /p(Y)p(Zf Y V= VYf|Y) Bayesian
) y ¥
~ Y Y
= [spz=Ewptv =" war
Y

Z,V independent
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(a) V=50 km/h  (b) V=25 km/h  (c) V=5 km/h

Fig. 4. Background PDFs for various relative speed, V.

(2) p(x,u) (b) p

Fig. 5. Ground(road) surface PDFs in (x,u) and (y, v) spaces. V=50km/h

B. Modeling Dangerous Vehicles in Video

For the probability distributions of potential dangerous
vehicles on the road, their probabilities in terms of image
properties (x,y,u,v) are computed. Assume a dangerous
event D € E, the general form next is computed as

p(x,y,u,v|D) = p(x,y,u,v (X,Y,Z, T, T,,T;) € D) (12)
z”  z z Z
' X fY  fToaT
= A =7 _ y=< py=°=""_"_"<
| P@plx=""y="u =
VA
T,
= L|Z) dz Bayesian
xZ yZ Zu+xT;
= p(Z>p(X:7’Y277T7T_ )
/ f fr f
VA
Z
T,=_"212)dz Eq7
xZ vZ
= [ @ipx =Z2)p(r =T i2)p(r: (T,
Z
Zu+xT,
T, = u—;x 12)dZ (X,Z),Y,(Ty,T,) are independent
' vZ —vZ
= [p@px = Zipr = Zi2)p(r. = —=12)
. f y
Z
Zu+xT,
/ p(T7)p(T, = % T.,Z)dT;dZ  Bayesian

Although the likelihood probability distribution p(x,y,u,v|D)
can be computed offline through integration, its storage as a
lookup table in a four dimensional space is not feasible for
online retrieval. The classification in such a space is more
time consuming. Therefore, in real practice, we compute the
subspace probability distribution p(x,u) and then p(y,v) to
discriminate the potential dangerous in a stepwise way.

p(x,ulD) = p(x,u |(X,Z,Ty,T;) € D) (13)
fX ST — xT;
=px=—u="—"——")
V4 V4



X T T,
= /I’(Z)P(X = L;M L |Z)dz Bayesian
) VA VA
xZ Zu—+xT,
= /p(Z)p(X = 77T17Tx == ‘12)dz Eq.7
Z
xZ Zu+xT,
=/p(2)p(X= 7|Z)p(Tz,Tx= 7 2\Z)dzZ
Z

(X,2),(T,,T,) independent
xZ Zu+xT,
= 7|Z)/p(TZ)p(Tx = TZHE,Z)dedz

1z
Bayesian
xZ Zu+xT,
= | [ r@ntx = Fizp(t)p(t = L 1 2 Tz
Z T
Now, we calculate p(y,v),
p(y,vID) = p(y,v |(Y,Z,T) € D) (14)
L yTZ)
zZ’ Z
/ ,v = YdZ Bayesian
z
—vZ
- [r@) ,Tz:imdz Eq.7
z
—vZ
= / p(z z>p<Tz = dz
z

Y. T, independent

() Vr (b) V, (©) G
(4G (e) Sy ® S,

Fig. 6. All possible scenarios probability distribution maps in (x,u) space.

(a) Vy (b) V,
(¢c) C; and C, (d) S; and S,

Fig. 7. All possible scenarios probability distribution maps in (y,v) space.

In general road environment, (x,u) reflects the location
of target vehicles and possible movements, whereas, (y,v)
depends on the height of vehicles. Its scaling in the vertical
direction provides an important clue of distance to a target
vehicle, which can be used in computing time to collision.

In addition, as shown from Eq.14, p(y,v) does not depend
on x. Thus dangerous cases C,, C; and S,, S; have the same
probability maps in (y,v) space.

Now, we compute p(x,y,u,v|V¢), p(x,y,u,v|V,), p(x,y,u,v|C;),
p(x,y,u,v|Cy), p(x,y,u,v|S;), and p(x,y,u,v|S;) for each danger-
ous case by filling Egs.13 and 14 with the parameters in
Table 1. These results serve as the likelihood probability
for detecting dangerous events in the video. Figures 6 and
7 show plots of all the probabilities p(x,y,u,v|D) in the
subspace of (x,u) and (y,v).

C. Modeling Positions of Dangerous Vehicles in Video

In the similar deduction as above, we can also obtain the
probability distribution of dangerous vehicles in the image
frame as shown in Fig. 8. For the possible appearing posi-
tions described by the image subspace p(x,y), it is not suf-
ficient to discriminate which type of events and background
are there. However, the space provides the attention regions
for assigning the computing power in feature detection and
tracking. For example, the points extracted the trees and high
buildings as well as the ground are processed with lower
priorities than the points in the hot regions where dangerous
vehicles appear move Figure 8 below this line, above next

section.
e
y
Fig. 8.  Visualization of dangerous vehicle positions in (x,y) image

space. From left to right, the high probability regions correspond to
C1,51,Vo,Vr, Sy, Cy respectively.

For the varying vehicle velocity V, the dangerous cases
V¢, S;, and S; did not change. Since, vehicle velocity takes
only in 7; distributions. In all cases, we used relative speed to
target vehicle, thus p(7;) distributions are invariant for case
{V},S,,S:}. However, for the remaining cases of {C;,C,V,},
their p(x,u|D) are affected by the speed of observing vehicle.
As shown in Figs.11 and 12, events V; through §; are
separable from background and road. Only V, is merged
into V; at a high speed of observing vehicle, which can be
considered at highway. They are not separable with the image
velocity (x,u), but should be based on the vehicle size change
related to (y,v).

Physical Environment Values
J | Wider than a road to include all | -40 ~ 40m
X | backgrounds in video
| | Higher than vehicle heights -3 ~ Im
Y
J | From camera position to distance 0 ~ 200m
Z | close to infinity
|| Range for relative speed -60 ~ Om/s
I

TABLE I
PARAMETER SELECTION IN PROBABILITY COMPUTATION
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V. ALERT COLLISION EVENTS

In this section, we discuss the possible approaches to alert
the potential events by computing the motion signals in the
video frame and the likelihood of the dangerous events. We
will identify if the points extracted have their motion behav-
iors that are predicted as the potential dangerous events.

Denote the background event B, and non-dangerous vehi-
cle event —F, we can use Bayesian rule

(E)

P(—Ex,y,u,v) =< p(x,y,u,v|=E)p(-E)
o< p(x,y,u,v|B)p(B)

to classify the feature points. Further, using the condition

probability, we have the posterior probability of potential

collision as
P(E|x,y,u,v)

P(E|x,y,u,v) o< p(x,y,u,v|E)p (15)

p(Blx,y,u,v)

o< p(x,y,u,v|E)p(E) (16)

= p(x,y|E)p(u,v|x,y,E)p(E)
= p(x,y)p(u|x,y,E)p(v|x,y,mv,E)p(E)

It is noticeable that the dangerous events are partially
separable from the non-dangerous motions and the motion
of background in the subspaces of p(x,u) and p(y,v). To
identify dangerous events with the image output of (x,y,u,v),
a decision tree can be constructed on subspaces of p(x,y),
p(x,u), and p(y,v). The root is separated to two subtrees i.e.,
potential target vehicle areas or background (sky, highrise,
etc.) by using the distribution of vehicle appearing positions
p(x,y|[E) given in Fig. 8. The feature points classified in
the background are not processed anymore. In the possible
locations of the collision vehicles, background and non-
danger vehicles {BU—E} can be separated from dangerous
vehicles E by examining p(x,u|D). To identify whether a
captured point might possibly be on a collision vehicle, we
can examine p(x,u|E) > §, as indicated by Fig. 9(a), where
0y is a threshold. This limit a small u so that the target
vehicle is almost moving along the line of sight towards
the camera. However, this still leaves some ambiguity as
depicted in Fig. 10. Finally, we can check p(y,v|D) as in Fig.
7 to classify if the point is on an object that is approaching
to the camera, stays at the same distance, or leaves away.
Only the approaching case is dangerous.
U

U

(@) p(x,u|E) where Vy and V,
are hard to discriminate
Fig. 9. The projected subspace of p(x,u|E) and p(x,u|B)

(b) Background and road p(x,u|B)

VI. CONCLUSION

This paper aims at real time collision alarming for safety
driving. The main approach is to detect motion information
in car video in combined with the knowledge of road
environment and traffic flow. We model the location specific
motion in the in-car video that gives more precise prediction

Image frame Distant

vehicle

Fig. 10. Image frame showing two cars that may appear at the same

location with similar horizontal velocities. The close one is performing Sr
action while the distant car is not a danger because it is moving ahead in
a fast speed need a little bit space between two figures. One line after this
line.

(a) V. =25km/h (b) V =50km/h V= 100km/h
Fig. 11. Vlsuahzmg p(x,u|D) for different velocities in (x,u) space.
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(a) V =25km/h
Fig. 12.

(b) V =50km/h
Visualizing p(x,u|B) for different velocities in (x,u) space.

(c¢) V =100km/h

of dangerous events than just using motions. Bayesian rule
is used in finding and alarming potential dangers based on
their precomputed likelihood PDFs in look-up tables. We will
further extend this results to various situations to verify our
approach. In the future, we will refine our models so that the
classification of the potential dangers will be more precise
and compliance to real data. We will also extend the road
and environment model to curved ones and more complicated
scenarios.
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